Integrate x*cos(x)

As there are 2 x terms in the integral we will use integration by parts. Remember;  ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx (found by integrating the product rule). From xcos(x) we need to decide which x term will be u and which will be dv/dx. The reason the origional questoin is hard to integrate is due to it having 2 x terms, using the equation ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx gives us the integral  ∫v*(du/dx)dx, by picking the u and dv/dx terms correctly we can ensure this integral has only one x term. We therefor want the u term to integrate to a non-x term, so, let u=x and dv/dx = cos(x).

Now we can calculate the du/dx and v terms, firstly du/dx= 1 ( using the general rule u = axb, du/dx = (a*b)xb-1 ). And secondly our v term, found by integrating dv/dx = cos(x), hence v = sin(x) (as we know sin(x) differentiates to cos(x) ). 

Finally we can sub into  ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx to get  ∫xsinxdx = xsin(x) - ∫sin(x)*1 ( ∫sin(x)*1 simplifies to  ∫sin(x) ), completing the integral ∫sin(x) = -cos(x) the equation becomes  ∫xsinxdx= xsin(x) - - cos(x), which simplifies to  ∫xsinxdx = xsin(x) + cos(x).

RW
Answered by Rebecca W. Maths tutor

8801 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can we remember the difference between differentiation and integration?


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


How do you find the integral of sin^2(x) dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning