Integrate x*cos(x)

As there are 2 x terms in the integral we will use integration by parts. Remember;  ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx (found by integrating the product rule). From xcos(x) we need to decide which x term will be u and which will be dv/dx. The reason the origional questoin is hard to integrate is due to it having 2 x terms, using the equation ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx gives us the integral  ∫v*(du/dx)dx, by picking the u and dv/dx terms correctly we can ensure this integral has only one x term. We therefor want the u term to integrate to a non-x term, so, let u=x and dv/dx = cos(x).

Now we can calculate the du/dx and v terms, firstly du/dx= 1 ( using the general rule u = axb, du/dx = (a*b)xb-1 ). And secondly our v term, found by integrating dv/dx = cos(x), hence v = sin(x) (as we know sin(x) differentiates to cos(x) ). 

Finally we can sub into  ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx to get  ∫xsinxdx = xsin(x) - ∫sin(x)*1 ( ∫sin(x)*1 simplifies to  ∫sin(x) ), completing the integral ∫sin(x) = -cos(x) the equation becomes  ∫xsinxdx= xsin(x) - - cos(x), which simplifies to  ∫xsinxdx = xsin(x) + cos(x).

RW
Answered by Rebecca W. Maths tutor

8810 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


By using the substitution, x = 2sin(y) find the exact value of integral sqrt(1/3(4-x^2)) dx with limits 0 and 1.


A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).


The curve C has equation y = f(x) where f(x) = (4x + 1) / (x - 2) and x>2. Given that P is a point on C such that f'(x) = -1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning