Find the gradient of a straight line with the points P(5,3) and Q(8,12)

First we draw a picture, to visually see what the question is asking. A simple set of coordinate-axes and notches so we can accurately put our point P and Q, though being accurate isn't important it will give a good idea of what kind of numbers we are looking for. Now the gradient represents 'for every step x along, we go y steps up' so we want to divide dy (the differnce in the y values) by dx (the differnce in the x values). That is to say dy/dx=(12-3)/(8-5)=9/3=3. This is the answer.

AG
Answered by Alexander G. Maths tutor

4026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact gradient of the curve y = ln(1-cos 2x) at the point with x-coordinate π/6.


Find the integral of xcosx(dx)


Using partial fractions find the integral of (15-17x)/((2+x) (1-3x)^2 )


Differentiate y = x^3 + 2x^2 + 4x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning