Find the gradient of a straight line with the points P(5,3) and Q(8,12)

First we draw a picture, to visually see what the question is asking. A simple set of coordinate-axes and notches so we can accurately put our point P and Q, though being accurate isn't important it will give a good idea of what kind of numbers we are looking for. Now the gradient represents 'for every step x along, we go y steps up' so we want to divide dy (the differnce in the y values) by dx (the differnce in the x values). That is to say dy/dx=(12-3)/(8-5)=9/3=3. This is the answer.

Answered by Alexander G. Maths tutor

3353 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the indefinite integral ∫5exp(3-4x)dx ?


Find the equation to the tangent to the curve x=cos(2y+pi) at (0, pi/4)


Can you differentiate the following function using two methods:- y = e^(2x+1)


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences