Find the gradient of a straight line with the points P(5,3) and Q(8,12)

First we draw a picture, to visually see what the question is asking. A simple set of coordinate-axes and notches so we can accurately put our point P and Q, though being accurate isn't important it will give a good idea of what kind of numbers we are looking for. Now the gradient represents 'for every step x along, we go y steps up' so we want to divide dy (the differnce in the y values) by dx (the differnce in the x values). That is to say dy/dx=(12-3)/(8-5)=9/3=3. This is the answer.

AG
Answered by Alexander G. Maths tutor

3961 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the turning point on the curve f(x) = 2x^2 - 2x + 4


Find the integral of 1/(x-5) with respect to x


Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


How would you use the following expression to approximate [(4-5x)/(1+2x)(2-x)] when x=5 (A2 pure)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning