Find the gradient of a straight line with the points P(5,3) and Q(8,12)

First we draw a picture, to visually see what the question is asking. A simple set of coordinate-axes and notches so we can accurately put our point P and Q, though being accurate isn't important it will give a good idea of what kind of numbers we are looking for. Now the gradient represents 'for every step x along, we go y steps up' so we want to divide dy (the differnce in the y values) by dx (the differnce in the x values). That is to say dy/dx=(12-3)/(8-5)=9/3=3. This is the answer.

AG
Answered by Alexander G. Maths tutor

3825 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


How do I tell if a curve has a maximum or a minimum?


When and how do I use the product rule for differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning