Integrate the expression cos^2(x).

This is a common question in C4 and the trick used to solve it is often used in sub-sections to full questions.

To solve it, we must simplify the expression in terms of cos(2x) using two trigonometric identities: "cos(2x) = cos2x - sin2x" and "sin2x + cos2x = 1". The result of these two expressions gives us "cos2x = 0.5cos(2x) + 0.5". We can now obtain the final solution by integrating this expression knowing that cos(x) integrates to sin(x), giving "0.25sin(2x) + 0.5x + c". The c term, representing a constant, is essential in the answer as we have not defined the integral between any limits.

RT
Answered by Rohan T. Maths tutor

5323 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


Find the integral of: sin^4(x)*cos(x)dx


How would you derive y = function of x; for example: y = 3x^3 + x^2 + x


How do you find the coordinate of where two lines intersect?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning