Integrate the expression cos^2(x).

This is a common question in C4 and the trick used to solve it is often used in sub-sections to full questions.

To solve it, we must simplify the expression in terms of cos(2x) using two trigonometric identities: "cos(2x) = cos2x - sin2x" and "sin2x + cos2x = 1". The result of these two expressions gives us "cos2x = 0.5cos(2x) + 0.5". We can now obtain the final solution by integrating this expression knowing that cos(x) integrates to sin(x), giving "0.25sin(2x) + 0.5x + c". The c term, representing a constant, is essential in the answer as we have not defined the integral between any limits.

Answered by Rohan T. Maths tutor

4096 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you solve trigonometric equations?


How to find y-intercept on a graphical calculator


Particles P and Q of masses 0.4kg and m kg are joined by a light inextensible string over a smooth pulley. When released Q accelerates downward at 2.45ms^-2. Find m.


How do you resolve forces on an object on an angled plane?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences