Integrate the expression cos^2(x).

This is a common question in C4 and the trick used to solve it is often used in sub-sections to full questions.

To solve it, we must simplify the expression in terms of cos(2x) using two trigonometric identities: "cos(2x) = cos2x - sin2x" and "sin2x + cos2x = 1". The result of these two expressions gives us "cos2x = 0.5cos(2x) + 0.5". We can now obtain the final solution by integrating this expression knowing that cos(x) integrates to sin(x), giving "0.25sin(2x) + 0.5x + c". The c term, representing a constant, is essential in the answer as we have not defined the integral between any limits.

Answered by Rohan T. Maths tutor

3863 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find and determine the nature of stationary points of a function?


Expand and simplify (n + 2)^3 − n^3.


write 2(sin^2(x)- cos^2(x)) + 6 sin(x) cos(x) in terms of cos(2x) and sin(2x)


Determine the integral: ∫x^(3/4)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences