Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)

For this example it would be better to use a dummy variable (a variable just to help with solving the equation but isn't a part of the final answer). Let us say our dummy variable, t = 1+x^2. So, substituting t into the equation, we now have y = t^3. Let us differentiate y w.r.t. t, dy/dt = 3t^2 and let us differentiate t w.r.t. x, dt/dx = 2x. So now, we have two new equations, dy/dt and dt/dx. If we multiply these two together using the chain rule - dy/dt * dt/dx = dy/dx (which is what we are trying to find), we end up with dy/dx = 3t^2 * 2x. Substitute x back into the equation dy/dx = 3(1+x^2)^2 * 2x = 6x(1+x^2)^2. (FINAL ANSWER)

Answered by Paolo A. Maths tutor

5776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


find dy/dx at t, where t=2, x=t^3+t and y=t^2+1


What does it mean when I get a negative value when I do a definite integral?


How can we solve a two-equation, two-unknown values?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences