Find all the cube roots of 1

Let z be a cube root of 1 such that: z^3 = 1 z^3 - 1 = 0 Factorise: (z-1)(z^2 + z + 1) = 0 Then, z=1, the real root, or: z^2 + z + 1 = 0 with z not equal to 1 Use quadratic equation: z = (-1 +- sqrt(1-4))/2 sqrt(1-4)=sqrt(3)i, an imaginary number Tidy up: z = -0.5 +- sqrt(3)i/2

Related Further Mathematics A Level answers

All answers ▸

find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


Express cos5x in terms of increasing powers of cosx


Prove that 1+4+9+...+n^2 = n(n+1)(2n+1)/6.


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences