Integrate the following between 0 and 1: (x + 2)^3 dx

Initially, we must recognise the simplest way to integrate this equation is using the 'reverse chain rule' method. 

This means raising the value of the power, in this case '3', by one, and then dividing by the new value of the power (which is four). This gives the integral to be 1/4 * (x + 2)^4 + c where c is a constant. We can check that this is correct by differentiating to give the original equation.

This is a definite integral, as there are bounds, so we must evaluate this new equation between 1 and 0: 

[1/4 * (x + 2)^4 + c] between 1 and 0 gives: 1/4[((1+2)^4 + c) - ((0 + 2)^4 + c)] = 1/4[81 - 16] = 16.25

Answered by Will E. Maths tutor

2962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


Use Integration by parts to find ∫ xsin3x dx


Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences