Find the derivative of the function f:(0,oo)->R, f(x)=x^x.

The domain of the function allows us to write f(x)=xx  as f(x)=eln(x^x)=ex ln(x) (since ln(x) is defined on (0,oo) only). Using the standard derivative rules we get f'(x)=ex ln(x) (x ln(x))'=ex ln(x)(1+ln(x))=xx (1+ln(x)).

Answered by Andrei R. Maths tutor

2719 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the point of Maths?


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


Differentiate y = x^3 + 2x^2 + 4x + 3


Differentiate this equation: xy^2 = sin(3x) + y/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences