Find the derivative of the function f:(0,oo)->R, f(x)=x^x.

The domain of the function allows us to write f(x)=xx  as f(x)=eln(x^x)=ex ln(x) (since ln(x) is defined on (0,oo) only). Using the standard derivative rules we get f'(x)=ex ln(x) (x ln(x))'=ex ln(x)(1+ln(x))=xx (1+ln(x)).

Answered by Andrei R. Maths tutor

2711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the line 4x+9y=10.


find the integral between the limits 0 and pi/2 of sin(x)cos(x) with respect to x.


Solve (3x+6)/4 - (2x-6)/5 = (x+7)/8.


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences