Prove that 1+4+9+...+n^2 = n(n+1)(2n+1)/6.

Consider the case n=1. Then 1(1+1)(2*1+1)/6 = 1 = 1^2 and so the claim is true for n=1. Suppose the claim is true for some positive integer n, so that 1+4+9+...+n^2 = n(n+1)(2n+1)/6. Then by the inductive hypothesis 1+4+9+...+n^2 + (n+1)^2 = (1+4+9+...+n^2) + (n+1)^2 = n(n+1)(2n+1)/6 + (n+1)^2                                                                                      = (n+1)(2n^2 + n + 6(n+1))/6                                                                                      = (n+1)(n+2)(2n+3)/6 which is the claim for n+1. As the claim is true for n=1, it's true for all n by induction.

JR
Answered by James R. Further Mathematics tutor

19337 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Integral of ln x


Find the modulus and argument of the complex number 1+2i


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences