Find the equation of a straight line that passes through the coordinates (12,-10) and (5,4). Leaving your answer in the form y = mx + c

Finding the gradient (m): The gradient is the change in y-axis over the change in x-axis Δy = -10-4= -14        Δx = 12-5=7 Δy/Δx = -14/7 = -2 Accumilating the equation: The equation of a straight line can be deduced by a simple formula y- ya = m(x- xa)      where a is a coordinate which lies on the lie.

The equation: y - 4 = -2(x - 5) y - 4 = -2x + 10

Therefore the equation of the line: y= -2x+14

MM
Answered by Martin M. Maths tutor

8753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is Integration


Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.


How do you differentiate y=ln(x)


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning