A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1

  1. Differentiating left hand side: 2(x+y)(1+dy/dx) from the chain rule 2. Differentiating right hand side: y2+2xy(dy/dx) from the product rule 3. Equating sides and taking out factors of dy/dx to rearrange for dy/dx: dy/dx=[y2-2(x+y)]/[2(x+y)-2xy] 4. Substitute x=1 into original expression and solving for y (i.e. solving (1+y)2=y2) gives y=-1/2 5. Substituting x=1 and y=-1/2 into the expression for dy/dx gives dy/dx=-3/8
Answered by Peter K. Maths tutor

3741 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of 1/(x-5) with respect to x


A curve is given by the equation y = (1/3)x^3 -4x^2 +12x -19. Find the co-ordinates of any stationary points and determine whether they are maximum or minimun points.


find dy/dx of the equation y=ln(x)2x^2


Find the derivative of f(x) = 2xe^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences