Differentiate arctan of x with respect to x.

Say arctan of x is equal to a value y. Now take the tangent of both sides; x now equals tan of y! Easy from here, differentiate both sides wrt x. Now 1 equals sec^2y dy/dx, and you can rearrange to find dy/dx. To simplify, use the trig identity tan^y+1=sec^y, to get 1/1+x^2 is dy/dx.

Related Further Mathematics A Level answers

All answers ▸

How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Find all square roots of the number 3 + 4i.


Integrate tan(x) wrt x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences