Differentiate arctan of x with respect to x.

Say arctan of x is equal to a value y. Now take the tangent of both sides; x now equals tan of y! Easy from here, differentiate both sides wrt x. Now 1 equals sec^2y dy/dx, and you can rearrange to find dy/dx. To simplify, use the trig identity tan^y+1=sec^y, to get 1/1+x^2 is dy/dx.

AM
Answered by Andrew M. Further Mathematics tutor

3694 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Cube roots of 8?


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning