Differentiate arctan of x with respect to x.

Say arctan of x is equal to a value y. Now take the tangent of both sides; x now equals tan of y! Easy from here, differentiate both sides wrt x. Now 1 equals sec^2y dy/dx, and you can rearrange to find dy/dx. To simplify, use the trig identity tan^y+1=sec^y, to get 1/1+x^2 is dy/dx.

Related Further Mathematics A Level answers

All answers ▸

(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


Given that f(x)=2sinhx+3coshx, solve the equation f(x)=5 giving your answers exactly.


The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences