Differentiate arctan of x with respect to x.

Say arctan of x is equal to a value y. Now take the tangent of both sides; x now equals tan of y! Easy from here, differentiate both sides wrt x. Now 1 equals sec^2y dy/dx, and you can rearrange to find dy/dx. To simplify, use the trig identity tan^y+1=sec^y, to get 1/1+x^2 is dy/dx.

Related Further Mathematics A Level answers

All answers ▸

Write 1 + √3i in modulus-argument form


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


How to determine the rank of a matrix?


Given that abc = -37 + 36i; b = -2 + 3i; c = 1 + 2i, what is a?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences