The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.

To find the distance between the points A and C, we want to find the magnitude of the vector AC. In order to do this, we must first find the vector AC, which we do by using their position vectors. We are given that the position vector of A is (2,4,1), and the position vector of C in terms of OB. So first, we calculate OC:

OC = 2OB = 2*(3,2,-1) = (6,4,-2)

Now we have OA and OC, we can find the vector AC by subtracting OA from OC:

AC = OC - OA = (6,4,-2) - (2,4,1) = (4,0,-3)

Now it's just a case of finding the magnitude of this vector AC, which will give us the distance between the points A and C.

| AC | = (4^2 + 0^2 + 3^2) ^ (1/2) = 25^(1/2) = 5

Answered by Sophie W. Maths tutor

10359 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x^2 +2)(2x-6) with respect to x.


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


3/5 of a number is 162. Work out the number.


A ball is released on a smooth ramp at a distance of 5 metres from the ground. Calculate its speed when it reaches the bottom of the ramp.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences