The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.

To find the distance between the points A and C, we want to find the magnitude of the vector AC. In order to do this, we must first find the vector AC, which we do by using their position vectors. We are given that the position vector of A is (2,4,1), and the position vector of C in terms of OB. So first, we calculate OC:

OC = 2OB = 2*(3,2,-1) = (6,4,-2)

Now we have OA and OC, we can find the vector AC by subtracting OA from OC:

AC = OC - OA = (6,4,-2) - (2,4,1) = (4,0,-3)

Now it's just a case of finding the magnitude of this vector AC, which will give us the distance between the points A and C.

| AC | = (4^2 + 0^2 + 3^2) ^ (1/2) = 25^(1/2) = 5

Answered by Sophie W. Maths tutor

9821 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.


Integrate the expression cos^2(x).


Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


find the integral of (2x - (3x^1/2) +1) between 9 and 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences