Derive an expression for the time taken, (t) for a test mass to fall to the ground from a height (h) in a uniform gravitational field (g = 9.81 ms^-2)

We first build an intuition for exactly what acceleration is and what we expect to happen. In the uniform gravitational field approximation, we assume h to be much less than the radius of the Earth. Therefore, the higher we drop the test mass from, the larger the velocity of the test mass when it hits the ground at h = 0. Derivation: We take velocity = dh/dt = acceleration(g)*time(t), and then use the required calculus to integrate to find the expression: h = (1/2)gt^2 . We finally tidy this up by rearranging using basic algebra to express t as a function of h t(h) = SQRT(2h/g) (I would then very likely ask to plot that function so that the intuitions developed at the start can be solidified and we can gain some confidence in the use of calculus to solve real problems.) 

Answered by Charlie B. Physics tutor

1696 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?


Why does an absorption spectrum (of eg Helium) show dark lines?


A golf ball is hit at angle θ to the horizontal, with initial velocity u. Stating an assumption, show that the horizontal distance travelled by the ball is directly proportional to u^2.


Bernard says that a mass executing uniform circular motion is not accelerating as it's speed is not changing. Which parts of his statement are correct and which are false. For those which are false state why they are and give the correct version.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences