Derive an expression for the time taken, (t) for a test mass to fall to the ground from a height (h) in a uniform gravitational field (g = 9.81 ms^-2)

We first build an intuition for exactly what acceleration is and what we expect to happen. In the uniform gravitational field approximation, we assume h to be much less than the radius of the Earth. Therefore, the higher we drop the test mass from, the larger the velocity of the test mass when it hits the ground at h = 0. Derivation: We take velocity = dh/dt = acceleration(g)*time(t), and then use the required calculus to integrate to find the expression: h = (1/2)gt^2 . We finally tidy this up by rearranging using basic algebra to express t as a function of h t(h) = SQRT(2h/g) (I would then very likely ask to plot that function so that the intuitions developed at the start can be solidified and we can gain some confidence in the use of calculus to solve real problems.) 

CB
Answered by Charlie B. Physics tutor

2097 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A positively charged particle enters a magnetic field oriented perpendicular to its direction of motion. Does the particle: A) Change its velocity, B) Change its speed, C) Accelerate in the direction of the magnetic field.


A pendulum of mass m is released from height h with a speed v at the bottom of its swing. a) What is the gravitational potential energy at height h and the kinetic energy at the bottom of its swing? b) Use conservation of energy to define the speed v.


A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.


Describe and explain the vertical motion of a parachutist which jumps out of an aeroplane at time t=0 and then releases the parachute shortly after reaching terminal velocity at time t=T. (Assume air resistance is not negligible).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning