Solve the following simultaneous equations: x^2-y^2=9, x - y = 1

We first notice we have a linear and non linear equation. The simplest method to solve is to substitute the linear equation into the non linear equation and then solve for one of the unknowns. Then substitute that value once known back into on the of the equations (into the linear one is simpler) and then solve again for the second unknown.

x - y = 1 ==>  x = 1 + y

x^2-y^2=9  ==> (1 + y) ^2 - y ^ 2 = 9  ==> 2y = 8 ==> y = 4

x = 1 + y ==> x = 1 + 4 ==>  x = 5

x = 5

y = 4

Answered by Shantu H. Maths tutor

6997 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Draw the graph of y=2-3x for values of x from -3 to 3.


How would you work out the price of a trip if it is usually £24 but a man has a railcard that gives him 30% off?


A school has a number of students. One is chosen at random; the probability that the student is female is 2/5. Knowing that there are 174 male students, work out the total number of students in the school.


a) You area told that y is proportional to x2 and that when y = 75, x = 5. Find a formula for y in terms of x. y = x b) Find the value of y when x = 3. c) Find the value of x when y = 1200.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences