Solve the following simultaneous equations: x^2-y^2=9, x - y = 1

We first notice we have a linear and non linear equation. The simplest method to solve is to substitute the linear equation into the non linear equation and then solve for one of the unknowns. Then substitute that value once known back into on the of the equations (into the linear one is simpler) and then solve again for the second unknown.

x - y = 1 ==>  x = 1 + y

x^2-y^2=9  ==> (1 + y) ^2 - y ^ 2 = 9  ==> 2y = 8 ==> y = 4

x = 1 + y ==> x = 1 + 4 ==>  x = 5

x = 5

y = 4

Answered by Shantu H. Maths tutor

7229 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that 1/sin(2theta) - cos(2theta)/sin(2theta) = tan(theta)


Solve 14-x = 4(1+x)


Expand and Simplify (5x - 2y)^2


What is the difference between distance and displacement?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences