Solve the following simultaneous equations: x^2-y^2=9, x - y = 1

We first notice we have a linear and non linear equation. The simplest method to solve is to substitute the linear equation into the non linear equation and then solve for one of the unknowns. Then substitute that value once known back into on the of the equations (into the linear one is simpler) and then solve again for the second unknown.

x - y = 1 ==>  x = 1 + y

x^2-y^2=9  ==> (1 + y) ^2 - y ^ 2 = 9  ==> 2y = 8 ==> y = 4

x = 1 + y ==> x = 1 + 4 ==>  x = 5

x = 5

y = 4

SH
Answered by Shantu H. Maths tutor

8505 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of the line L1 is y = 3x – 2. The equation of the line L2 is 3y – 9x + 5 = 0. Show that these two lines are parallel.


(a) Factorisefully 3a3b+12a2b2 +9a5b3


What is 800 million in standard form?


What is the value of 5^15 / (5^3)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning