Solve the following simultaneous equations: x^2-y^2=9, x - y = 1

We first notice we have a linear and non linear equation. The simplest method to solve is to substitute the linear equation into the non linear equation and then solve for one of the unknowns. Then substitute that value once known back into on the of the equations (into the linear one is simpler) and then solve again for the second unknown.

x - y = 1 ==>  x = 1 + y

x^2-y^2=9  ==> (1 + y) ^2 - y ^ 2 = 9  ==> 2y = 8 ==> y = 4

x = 1 + y ==> x = 1 + 4 ==>  x = 5

x = 5

y = 4

Answered by Shantu H. Maths tutor

7288 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Differentiate (2a+3)^5/2 with respect to a


In a village the number of houses and the number of flats are in the ratio 7 : 4 the number of flats and the number of bungalows are in the ratio 8 : 5 There are 50 bungalows in the village. How many houses are there in the village?


√ (6²+8²) = ∛(125a³) Find a.


Solve the following pair of simultaneous equations: 5x+2y=8 and 2x+y=7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences