Integrate | x^7 (ln x)^2 dx ( | used in place of sigma throughout question)

Start the integration by parts process

|udv = uv - |vdu

  u = (ln x)2             dv = x7 dx

du = 2(ln x)/x dx         v = 1/8 x8

= 1/8 x8 (ln x)2 - | 1/4(ln x)x7 dx

= 1/8 x8 (ln x)2 -1/4 | x7(ln x) dx

Repeat the integration by parts method on the integral |x7(ln x) dx

u=(ln x)            dv = x7 dx

du = 1/x dx         v = 1/8 x8

= 1/8 (ln x) x8 - 1/8 | x7 dx

= 1/8 (ln x) x8 - 1/64 x8

Simplify the answer (remebering to add the constant of integration).

= 1/8 x8 (ln x)2 -1/4 (1/8 (ln x) x8 - 1/64 x)

= 1/8 x8 (ln x)2 -1/32 (ln x) x8 + 1/256 x8 + C

RD
Answered by Rowan D. Maths tutor

7878 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 1/u(u-1)^2 between 4 and 2


June 2008 C1 Paper Differentiation Question


1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


The equation (t – 1)x^2 + 4x + (t – 5) = 0, where t is a constant has no real roots. Show that t satisfies t2–6t+1>0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning