Integrate | x^7 (ln x)^2 dx ( | used in place of sigma throughout question)

Start the integration by parts process

|udv = uv - |vdu

  u = (ln x)2             dv = x7 dx

du = 2(ln x)/x dx         v = 1/8 x8

= 1/8 x8 (ln x)2 - | 1/4(ln x)x7 dx

= 1/8 x8 (ln x)2 -1/4 | x7(ln x) dx

Repeat the integration by parts method on the integral |x7(ln x) dx

u=(ln x)            dv = x7 dx

du = 1/x dx         v = 1/8 x8

= 1/8 (ln x) x8 - 1/8 | x7 dx

= 1/8 (ln x) x8 - 1/64 x8

Simplify the answer (remebering to add the constant of integration).

= 1/8 x8 (ln x)2 -1/4 (1/8 (ln x) x8 - 1/64 x)

= 1/8 x8 (ln x)2 -1/32 (ln x) x8 + 1/256 x8 + C

Answered by Rowan D. Maths tutor

7140 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


Find the derivative of f where f(x)=a^x.


Differentiate 3x^2 + 6x^5 + 2/x


show that f(x)=cos(x) is even and what is its graphical property


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences