It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly

1.Differentiating: f'(x)= 2cosh(x)+3sinh(x) At a stationary point, we know f'(x)=0. Therefore 2cosh(x)+3sinh(x)=0. (easy to forget that unlike nromal trig there is no change in sign) Rearranging gives tanh(x)=-2/3. This can be easily solved using arctanh(x)=1/2ln(1+x/1-x) 2. Writing in terms of exponentials gives 5e^x-e^-x=10 Multiply by e^x. This can then be recognised as a simple quadratic equation in e^x. (sometimes can be awkward to spot)

Related Further Mathematics A Level answers

All answers ▸

A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)


Show that G = {1, -1} is a group under multiplication.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences