How do you find the point or points of intersection of a straight line and a circle?

Given the equation of the straight line is: x+y=9 and the equation of the circle is: (x-2)2+(y-3)2=16 , find the point or points of intersection? The equation x+y=9 can be rearranged to make x=9-y. This equation equal to x can then be substituted into the equation of the circle to form (9-y-2)2+(y-3)2=16. If you simplify and square the bracket you get 2y2-20y+58=16. This can be simplified to 2(y-3)(y-7)=0. Thus y-7=0 so y=7 and y-3=0 so y=3. These are the y axis intersections of the circle and the line. At this point they both have the same x value and y value and therefore by definition touch. As there is two points the circle and line make contact it is an intersection, instead of a tangent (one point of contact). The x value can be found by substituting both y values into the equation of the line. For y=7 it yields the x value of 2 and for y=3 it yields the x value of 6.  The x and y values of the coordinate can then be substituted into the eqaution of the circle to confirm that no algebraic error has been made. 

Answered by Edward C. Maths tutor

3743 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The common ratio of a geometric progression is 0.99. Express the sum of the first 100 terms as a percentage of the sum to infinity, giving your answer correct to 2 significant figures.


Solve the ODE y' = -x/y.


How would I differentiate a function such as f(x)=x^3(e^(2x))?


How do you find the integral of 'x sin(2x) dx'?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences