Solve the simultaneous equations: 4x+y=25 and x-3y=16

Lets first give the equations names.

4x+y=25 (A)

x-3y=16 (B)

We want to get the equations so that they have either the same number of x's or same number of y's. So let's multiply equation (A) by three so that both equations have 3y in them.

(A) x 3: 12x+3y=75

STOP (Same signs, Take-away. Opposite signs, Plus).

So our 3y's have opposite signs [(A) is +3y and (B) is -3y)] so we need to add these equations together to eliminate all of the y's.

(A) + (B) gives 13x=91

x=91/13, So x=7

We now need to subsitute our value for x into one of the equations to find y.

So subbing x=7 into equation (B) gives:

7-3y=16

7-16=3y

-9=3y

y=-3

So our solution is x=7, y-3.

We can now check our solution by subbing these values into the other equation. So subbing x=7 and y=-3 into (A) gives 4(7)+(-3)=25. This means our solution for the simultaneous equation is correct because these values also work for equation (A).

Answered by Michael D. Maths tutor

8182 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

work out 3 1/2 - 2 1/3. Give answer as an improper fraction


y=x^2+5x+6 solve for x


Adam buys 4kg of sweets and pays £10 for them. Adam puts all of the sweers into bags with 250g in each bag. He sells the bags for 70p each. All the bags of sweets are sold, what is the percentage profit?


How could you sketch a graph for y=x^2-10x+21?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences