Factorise the expression: 2x^2 + 17x + 21

There are several ways to factorise this quadratic expression, but the best way in my opinon is:

  1. Take the constant in front of the x^2 and multiply it by the standalone constant (i.e. multiply 2 by 21, which gives 42). The constant in front of x is 17. This tells us that we need to find 2 numbers whose product is 42 and sum is 17.

  2. After trail and error, we know that these two numbers will be 14 and 3. Hence, the middle term (17x) will be split into these two terms (i.e. 13x and 4x), giving us 2x^2 + 14x + 3x + 21 . 

  3. Factorising these individually gives us: 2x(x+7) + 3(x+7) and final answer comes to (2x + 3) ( x + 7) 

TM
Answered by Tushar M. Maths tutor

7864 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I calculate the gradient of a linear (straight) graph?


Jo wants to work out the solutions of x^2 + 3x – 5 = 0 She says, ‘‘The solutions cannot be worked out because x^2 + 3x – 5 does not factorise to (x + a)(x + b) where a and b are integers.’’ Is Jo correct?


Make y the subject of the formula 3y-p=h(2+y)


Write 0.38 as a percentage and as fraction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences