The point p lies on the curve with eqn x = (4y - sin(2y)^2, given that p has coordinates (p,π/2), p is a constant, a) find the exact value of p; the tangent to the curve at P cuts the y-axis at A, b) use calculus to find the coordinates of A.

a) Sub y= π/2 into equation, hence x coordinate is 4π^2 b) to find equation of the tangent, differentiate the equation using the chain rule (wrt y) and then substitute the coordinates of p into the differentiated equation. Then use dy/dx = 1/(dx/dy) x = (4y - sin(2y)^2  dx/dy = (4y - sin(2y)2(4 - 2cos(2y)) dx/dy(4π^2,π/2) = 24π ; hence dy/dx = 1/24π This is now the gradient of the tangent. Using y =mx +c (used for linear equations), where m is the gradient, x and y are coordinates of a point and c is the y intercept. Substitute values we have into this, then rearrange and we have that c = π/3, which is the y intercept; coordinates of A = (0, π/3)

Answered by Mar O. Maths tutor

7336 Views

See similar Maths 11 Plus tutors

Related Maths 11 Plus answers

All answers ▸

How would I solve for x? 2x + 4x = 12


Jodie works for a bookshop. She is paid £6.50 an hour plus 5% of the cost of each book she sells. On Saturday, Jodie worked for 3 hours and sold £220 worth of books. How much money did Jodie earn?


Sunita has 75 pens and she ties them into bundles of 8. How many pens does she have left over?


Below


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences