A graph is sketched with the equation x^2+4x-5. Find the minimum point of this graph.

Okay so the first thing we can identify is that it is a quadratic, hence the x2 at the beginning. From this we can now start to answer the question. To calculate the minimum point we must "complete the square"; this method involves getting the x into a squared bracket, so from "x2" to "(x+ or -...)2 " whilst considering the number which is not a coefficient (the number made when the squared racket is multiplied out). The first thing we do is halve the x coefficient (so the 4x). In order to 'recreate' the 4x you would have to have two lots of the new coefficient, 2x. If this is put into a squared bracket like so: (x+2)2, when multiplied out you have x2+4x (which is what you want) +4, which is what you want to change. The target equation is in the question, so in order for x2+4x +4 to become x2+4x -5, you have to subtract 9. As x2+4x+4 is equal to (x+2)2, the equation x2+4x-5 is equal to (x+2)2-9. The minimum point is (-x coefficient, Number outside) so it would be (-2, -9).

Answered by Harry S. Maths tutor

3859 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A cylinder has a radius of 4 cm and volume of 800 cm3. A similar cylinder with the same height has a volume of 200 cm3. Find the radius of the smaller cylinder.


How to solve the following simultaneous equations? Equation 1: 3x+y=10 Equation 2: 2x-y=5


factorise 3A^b+ 12A^2 B^2 + 9 A^5 B^3


6x-2y=33 4x+3y=9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences