Integrate by parts the following function: ln(x)/x^3

Let integrate be denoted by the letter I. For instance I(f) is the integration of a function f . Then Integration by parts states that I(u v') = uv - I(u' v), where u,v are function with u', v' their respective derivatives. Applying this to the above forumla we set u= ln(x) and v' = 1/ x3, then integrating v' gives us v= -1/(2 x2) and differentiating u gives u' = 1/x. Then applying the integration by parts formula we arrive at: I( ln(x)/x3 ) = -ln(x) / (2x2) + 1/2 I(1/x3). So the problem boils down to integrating 1/x3 which is -1/(2x2). Which gives us the answer: I(ln(x)/x3) = -ln(x)/(2x2) - 1/(4x2)

Answered by Paul D. Maths tutor

2829 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 1 / x(2sqrt(x)-1) on [1,9] using x = u^2 (u > 0).


Suppose that you go to a party where everyone knows at least one other person, you get a bit bored and wonder whether there are at least two people which know the same number of people there.


Find the derivative and following function and hence find the value of coordinates for when the function is at a stationary point:


Find the turning point of the line y = -2x^2 +5x -9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences