Show (2-3i)^3 can be expressed in the form a+bi where a and b are negative integers.

(2-3i) x (2-3i) = -5-12i.  -5-12i x (2-3i) = -46-9i.  a=-46, b=-9

WN
Answered by William N. Maths tutor

3728 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences