Given that 2-3i is a root to the equation z^3+pz^2+qz-13p=0, show that p=-2 and q=5.

Substitute 2-3i into equation using part i (2-3i)3=-46-9i.  -46-9i+p(-5-12i)+q(2-3i)-13p=0. -46-18p+2q-9i-12pi-3iq=0. Real: -46-18p+2q=0 and Imaginary: -9-12p-3q=0. p=-2, q=5

WN
Answered by William N. Maths tutor

11020 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of yx+5y-sin(y) = x


The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain


When using the trapezium rule to approximate area underneath a curve between 2 limits, what is the effect of increasing the number of strips used?


Two particles, A and B, are moving directly towards each other on a straight line with speeds of 6 m/s and 8 m/s respectively. The mass of A is 3 kg, and the mass of B is 2 kg. They collide to form a single particle of speed "v" m/s. Find v.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning