Given that 2-3i is a root to the equation z^3+pz^2+qz-13p=0, show that p=-2 and q=5.

Substitute 2-3i into equation using part i (2-3i)3=-46-9i.  -46-9i+p(-5-12i)+q(2-3i)-13p=0. -46-18p+2q-9i-12pi-3iq=0. Real: -46-18p+2q=0 and Imaginary: -9-12p-3q=0. p=-2, q=5

WN
Answered by William N. Maths tutor

11160 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is 'completing the square' and how can I use it to find the minimum point of a quadratic curve?


f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


what is the equation of the normal line to the curve y=x^2-4x+3 at the point (5,8)?


Find the equation of a straight line that passes through the coordinates (12,-10) and (5,4). Leaving your answer in the form y = mx + c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning