Find the general solution of 2 dy/dx - 5y = 10x

Try y=Aebx diffrentiate this (dy/dx = Abebx) and sub into 2dy/dx -5y = 0 to find complementary function. 2Abebx - 5Aebx = 0 2b - 5 = 0 b = 2.5 Find the particular integral using trial solution y = Cx+D, dy/dx = C 2C - 5(Cx+D) = 10x Separate constants and x terms to solve for C and D -5Cx = 10x C=-2 2C - 5D = 0 -4 - 5D = 0 D=-4/5 Combine these two solutions to find the general solution. The answer contains a constant, more information is needed to find A y = Ae2.5x - 2x - 4/5

Answered by Amy H. Maths tutor

4523 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we work out the asymptotes of the graph y=1/x -5


The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?


The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


Differentiate and factorise y = x^2(3x + 1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences