Find the first derivative of y=2^x

There is an initial subtle difficulty to this question, and it highlights understanding of the relationship between natural logarithms and the exponential function. One of the ways to solve this question, is to express y=2^x as y=e^(xln(2)), an entirely equivalent form. This is much easier to differentiate using the chain rule. The reason I chose this question is this is not the only way to find the derivative. If y=2^x ln(y)=ln(2^x) ln(y)=xln(2) differentiating implicitly dy/dx (1/y) = ln(2) rearranging dy/dx = yln(2) substitution of y=2^x dy/dx=ln(2)2^x I find this to be the most inspiring thing when explaining and learning mathematics, since there are so many different pathways to find the same answer, some with more elegance than others.

Answered by Alex M. Maths tutor

3152 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ?


Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


How do I use the product rule for differentiation?


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences