Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.

y = (2x -3)^3

y = (2x)^3 + 3.((2x)^2)(-3) + 3.(2x).(-3)^2 + (-3)^2 using Pascal's Triangle.

y = 8x^3 - 36x^2 + 54x - 27 

dy/dx = 24x^2 - 72x + 54

at point (1,-1); dy/dx = 24 -72 + 54 = 6

Therefore tangent line is of the form y=6x + c

at point (1,-1); -1=6.1 + c

Therefore c = -7 and tangent line is y = 6x - 7.

Answered by Robert S. Maths tutor

11747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) dy/dx (ii) d^2y/dx^2 (3 marks) (b) Verify that C has a stationary point when x = 2 (2marks) (c) Determine the nature of this stationary point, giving a reason for your answer. (2)


Find the area beneath the curve with equation f(x) = 3x^2 - 2x + 2 when a = 0 and b = 2


How to differentiate using the Product Rule


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences