How to find and classify stationary points (maximum point, minimum point or turning points) of curve.

To find the stationary points of a function we must first differentiate the function. The derivative tells us what the gradient of the function is at a given point along the curve. Therefore, should we find a point along the curve where the derivative (and therefore the gradient) is 0, we have found a "stationary point".

This, however, does not give us much information about the nature of the stationary point. We can begin to classify it by taking the second derivative and substituting in the coordinates of our stationary point. Should the value of this come out to be positive then we know our stationary point is a minimum point, if the value comes out to be negative then we have a maximum point and if it is 0 we have to inspect further by taking values either side of the stationary point to see what's going on! 

CJ
Answered by Callum J. Maths tutor

18579 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A radio sells for £63, after a 40% increase in the cost price. Find the cost price.


The volume, V, of water in a tank at time t seconds is given by V = 1/3*t^6 - 2*t^4 + 3*t^2, for t=>0. (i) Find dV/dt


How do you know if a function is odd or even?


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning