The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0

Two distinct real roots means that we can use b^2-4ac>0 relationship for any ax^2+bx+c equation. Apply the above gives, 4k^2 - 42(k+2)>0 Simplifying gives, k^2 - 2k -4 >0

AT
Answered by Andreas T. Maths tutor

11768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Explain what is meant by a critical path.


What is the integral of x^(3)e^(x) with respect to x?


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning