The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0

Two distinct real roots means that we can use b^2-4ac>0 relationship for any ax^2+bx+c equation. Apply the above gives, 4k^2 - 42(k+2)>0 Simplifying gives, k^2 - 2k -4 >0

Answered by Andreas T. Maths tutor

10843 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


Explain the Chain Rule


Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences