The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0

Two distinct real roots means that we can use b^2-4ac>0 relationship for any ax^2+bx+c equation. Apply the above gives, 4k^2 - 42(k+2)>0 Simplifying gives, k^2 - 2k -4 >0

AT
Answered by Andreas T. Maths tutor

12335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of f where f(x)=a^x.


Why does differentiation work like it does.


The equation of a curve C is (x+3)(y-4)=x^2+y^2. Find dy/dx in terms of x and y


Integration question 1 - C1 2016 edexcel


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning