How do you integrate ln(x) with respect to x?

This integral must be done using integration by parts. Therefore, we set u=ln(x) and dv=dx, which gives du=1/x and v=x.
Then, using the integration by parts formula the integral now equals x*ln(x)-int[dx]. This is then easily solved to give x[ln(x)-1], and we can't forget the constant of integration so to the end of this we add "+ c", giving a final answer of x[ln(x)-1] + c.

OH
Answered by Oliver H. Maths tutor

5062 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does differentiation work like it does.


Find the centre and radius of the circle with the equation x^2 + y^2 - 8x - 6y - 20 = 0.


a) show that (cosx)^2=8(sinx)^2-6sinx can be written as (3sinx-1)^2=2 b)Solve (cosx)^2=8(sinx)^2-6sinx


Solve the inequality |4x-3|<|2x+1|.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning