How do you integrate ln(x) with respect to x?

This integral must be done using integration by parts. Therefore, we set u=ln(x) and dv=dx, which gives du=1/x and v=x.
Then, using the integration by parts formula the integral now equals x*ln(x)-int[dx]. This is then easily solved to give x[ln(x)-1], and we can't forget the constant of integration so to the end of this we add "+ c", giving a final answer of x[ln(x)-1] + c.

OH
Answered by Oliver H. Maths tutor

5364 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


What is a complex number?


Find the volume of revolution when the area B is rotated 2 pi radians about the x axis


Find the equation of the tangent to the curve y = 2x^2 + x - 1 at the point where x = 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning