How do you integrate ln(x) with respect to x?

This integral must be done using integration by parts. Therefore, we set u=ln(x) and dv=dx, which gives du=1/x and v=x.
Then, using the integration by parts formula the integral now equals x*ln(x)-int[dx]. This is then easily solved to give x[ln(x)-1], and we can't forget the constant of integration so to the end of this we add "+ c", giving a final answer of x[ln(x)-1] + c.

Answered by Oliver H. Maths tutor

4109 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?


A 10 kilogram block slides down a 30 degree inclined slope, the slope has a coefficient of friction of 0.2. Calculcate the blocks acceleration down the slope.


If a curve has equation y = (-8/3)x^3 - 2x^2 + 4x + 18, find the two x coordinates of the stationary points of this curve.


Find the integral of tan^2x dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences