How do you integrate ln(x) with respect to x?

This integral must be done using integration by parts. Therefore, we set u=ln(x) and dv=dx, which gives du=1/x and v=x.
Then, using the integration by parts formula the integral now equals x*ln(x)-int[dx]. This is then easily solved to give x[ln(x)-1], and we can't forget the constant of integration so to the end of this we add "+ c", giving a final answer of x[ln(x)-1] + c.

OH
Answered by Oliver H. Maths tutor

5172 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = (3x + 5)(4x - 7)


A circle has eqn x^2 + y^2 + 2x - 6y - 40 = 0. Rewrite in the form (x-a)^2 + (y-b)^2 = d.


The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.


How many ways are there to arrange n distinct objects in a CIRCLE?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning