Using mathematical induction, prove De Moivre's Theorem.

De Moivre's theorem states that (cosø + isinø)= cos(nø) + isin(nø). Assuming n = 1 
    (cosø + isinø)= cos(1ø) + isin(1ø)
which is true so correct for n = 1 Assume n = k is true so (cosø + isinø)= cos(kø) + isin(kø). Letting n = k + 1 we know that (cosø + isinø)k+1 = cos((k + 1)ø) + isin((k + 1)ø). But trying to derive the answer from n = k we get:
   (cosø + isinø)k+1 = (cosø + isinø)x (cosø + isinø)      //Using law of indecies
                = (cos(kø) + isin(kø)) x (cosø + isinø) //We've assumed this to be true from n = k
                 = cos(kø)cos(ø) + icos(kø)sin(ø) + isin(kø)cos(ø) - sin(kø)sin(ø) //Expansion
Now using the trigenomitery rules of
sin(a + b) = sin(a)cos(b) + sin(b)cos(a) and cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
and collecting terms to match these formulas we get
                 = cos(kø + ø) + isin(kø + ø)
                = cos((k + 1)ø) + isin((k + 1)ø)  //Taking out ø as a common factor inside the trig functions Which equals our expression gained from De Moivre's theorem for n = k + 1,
and as theorem is true for n = 1 and n = k + 1,
statement is true for all values of n >= 1.

SE
Answered by Scott E. Maths tutor

80141 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


What is differentiation?


How do I use the chain rule for differentiation?


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning