How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?

Normally, this would be quite hard! We'd have to play around with the sequence and try different formulas until something worked. Luckily, this is what we call an "Arithmetic Series". That's because when we go from one term to the next, it's always the same difference between the two numbers. In this case, it's three. We know a formula for this!

The formula for the sum of the first n terms of an arithmetic series is given by Sn = n(a1 + an)/2. We use a1 to mean the very first term of the series, and an to mean the nth term of the series. If in our example we had to find the sum of the first five terms, we'd do Sn = 5(5 + 17)/2 = 55.

Answered by Matthew S. Maths tutor

15819 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


Use the substition u = cos(x) to find the indefinite integral of -12sin(x)cos^3(x) dx


A curve has equation y = 20x - x^2 - 2x^3 . The curve has a stationary point at the point M where x = −2. Find the x- coordinate of the other stationary point of the curve


Can I take a derivative at x=0 for the function f(x) = |x| ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences