How would I differentiate a function such as f(x)=x^3(e^(2x))?

Here, f(x)=x3e2x is a function consisting of two functions multiplied together, so we need to use the product rule. The product rule is as follows: where f(x)=u(x)v(x), f'(x)=u(x)v'(x)+u'(x)v(x). The first step involves identifying the two functions that are multiplied together, and representing them by u and v. So, let u(x)=x3 and v(x)=e2x. Now, we must find u'(x) and v'(x). u'(x)=3x2 (from Core 1: multiply by the power, then subtract 1 from the power) and v'(x)=2e2x  (from using the chain rule). Then, substitute u(x), v(x), u'(x) and v'(x) into our product rule formula, giving f'(x)=x. 2e2x + 3x.e2x     If you wish to simplify this, you can do so by taking out a common factor of x2e2x from each term: f'(x)=x2e2x(2x+3)

Answered by Lauren B. Maths tutor

3019 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 6x^(7/2)-5x^2+7


How do you go about differentiating a^x functions?


How can the y=sin(x) graph be manipulated?


What are the roots of 3x^2 + 13x + 4 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences