Find the equation of the tangent to the curve y = (5x+4)/(3x-8) at the point (2, -7).

Firstly, we need to find the gradient at this point on the curve as the tangent will have the same gradient. So to find the gradient of the curve or in other words, dy/dx, we differentiate the equation. To do this here, we use the quotient rule. I like to use a rhyme to help me remember the quotient rule - but it is also given in the formula sheet. I use "low d-high minus high d-low all over the square of what's below". Where low and high is the bottom and top of the fraction respectively and d-low and d-high is the differential of the bottom and top respectively.

So we get dy/dx = ((3x-8)*5 - (5x+4)*3)/(3x-8)2, now we can substitute the x co-ordinate of the point given to find the gradient, which we get as -13. Now to find the equation of the tangent we can use y-y1=m(x-x1) where y1 and x1 are the cordinates of the point given. y--7=-13(x-2) simplifies to y+7=-13x+26 which in turn simplifies to y=-13x+19.

Answered by Manika S. Maths tutor

3259 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient at x=1 for the curve y=2x*e^2x


The circle C has centre (3, 1) and passes through the point P(8, 3). (a) Find an equation for C. (b) Find an equation for the tangent to C at P, giving your answer in the form ax + by + c = 0 , where a, b and c are integers.


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences