f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.

  1. Re-write f(x)  using indicies, so that the use of the product rule becomes more clear => f(x) = (4x + 1) *(x - 2)^-1 where ^ means 'raised to the power of' and * means 'multiplied by'.

  2. use the product rule to differentiate f(x) => f'(x) = [(x - 2)^-1*d/dx(4x + 1)] + [(4x + 1)*d/dx(x - 2)^-1]. In order to work out the derivative in the second term 'd/dx(x - 2)^-1', it is a good idea to use a substitution since (x - 2)^-1 is a function of x raised to a power so it does not change linearly with x as the derivative in the first term does, so is a little more complicated to evaluate. 

  3. use z(x) = (x - 2) which turns the derivative in the second term into d/dx(z(x)^-1). If some function g(z) = z(x)^n, then dg(z)/dx = dz(x)/dx * dg(z)/dz, since g is a function of z, and z is a function of x.

applying this to the derivative from part 2, this gives d/dx(x - 2)^-1 = (-1) * (x - 2)^2 * (1)

  1. Writing out this along with the other derivative terms in the eqution from part 2 gives f'(x) = -9/(x - 2)^2.

  2. equation this to -1 and rearranging for x gives the answer. 

ZS
Answered by Zak S. Maths tutor

4817 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


Sketch the graph y = 2sin(4x)


The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


Integrate x((x^2)+2) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning