Express cos5x in terms of increasing powers of cosx

De Moivre's theorem: (cos5x + isin5x) = (cosx + isinx)5 To get cos5x we will need to expand (cosx + isinx)5 and then take the real parts. Binomial expansion: (cosx + isinx)5 = (5C0)(cosx)5 + (5C1)(cosx)4(isinx) + (5C2)(cosx)3(isinx)2 + (5C3)(cosx)2(isinx)3 + (5C4)(cosx)(isinx)4 + (5C5)(isinx)5 = cos5x + 5i(cos4x)(sinx) - 10(cos3x)(sin2x) - 10i(cos2x)(sin3x) + 5(cosx)(sin4x) + isin5x Taking the real parts of the above expansion to get cos5x: cos5x = cos5x - 10(cos3x)(sin2x) + 5(cosx)(sin4x) To get cos5x in terms of powers of cosx only, we need to use the trigonometric identity cos2x + sin2x = 1 Rearrange this to get sin2x = 1 - cos2x and substitute in: cos5x = cos5x - 10(cos3x)(1 - cos2x) + 5(cosx)(1 - cos2x)2 And expand: = cos5x - 10(cos3x)(1 - cos2x) + 5(cosx)(cos4x - 2cos2x + 1) = cos5x - 10cos3x + 10cos5x + 5cos5x - 10cos3x + 5cosx Finally group like powers together: cos5x = 5cosx - 20cos3x +16cos5x In order to check this is correct, substitute in different values of x for your answer and cos5x.

Related Further Mathematics A Level answers

All answers ▸

Give the general solution to y'' - 3y' + 2y = 4x


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


I'm struggling with an FP2 First-Order Differential Equations Question (Edexcel June 2009 Q3) and the topic in general!


What is the complex conjugate?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences