How do I integrate 2^x?

Let's first consider the differential of 2x. We know that this becomes ln(2)*2x. We can compare this to the integrand and see that this is very close indeed! The only problem is that ln(2). So now consider 2x / ln(2). When we differentiate this we get 2x. So we conclude that the integral of 2x is 2x / ln(2) + C (don't for get the +C!). This is sometimes known as the reverse chain rule.

JH
Answered by Jordan H. Maths tutor

91535 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


What is a logarithm?


How would I solve the equation 25^x = 5^(4x+1)?


How do I work out the equation of a tangent line to a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning