How do I integrate 2^x?

Let's first consider the differential of 2x. We know that this becomes ln(2)*2x. We can compare this to the integrand and see that this is very close indeed! The only problem is that ln(2). So now consider 2x / ln(2). When we differentiate this we get 2x. So we conclude that the integral of 2x is 2x / ln(2) + C (don't for get the +C!). This is sometimes known as the reverse chain rule.

JH
Answered by Jordan H. Maths tutor

86182 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C2 differentiate 2x^2 -3x +4 with respect to X


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


Differentiate sin(x)cos(x) using the product rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences