In the Photoelectric effect, Why does increasing the light intensity have no effect on the energy of the electron emitted?

The equation to calculate the energy of an emitted electron is: E = hf - φ, where E is the energy of the electron emitted, is the Planck's constant, f is the frequency of the light and φ is the work function of the metal which is the minimum energy required to emit an electron. Here you can see that nothing is dependant on light intensity because the intensity is essentially the number of photons and does not increase nor decrease the energy of a single photon, therefore has no effect on the energy of an electron emitted. 

If the light has enough energy to emit a photon i.e. has a high enough frequency, then the light intensity will increase the probability of an electron being emitted from the metal.  

Answered by Pankaj K. Physics tutor

19830 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does water stay in the bucket if it is swung through a loop fast enough?


How does a capacitor work and how do I treat it in a circuit?


Calculate the resistance of a uniform wire of diameter 0.5mm, length 2m and resistivity 1.7x10^-8Ωm.


In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences