In the Photoelectric effect, Why does increasing the light intensity have no effect on the energy of the electron emitted?

The equation to calculate the energy of an emitted electron is: E = hf - φ, where E is the energy of the electron emitted, is the Planck's constant, f is the frequency of the light and φ is the work function of the metal which is the minimum energy required to emit an electron. Here you can see that nothing is dependant on light intensity because the intensity is essentially the number of photons and does not increase nor decrease the energy of a single photon, therefore has no effect on the energy of an electron emitted. 

If the light has enough energy to emit a photon i.e. has a high enough frequency, then the light intensity will increase the probability of an electron being emitted from the metal.  

PK
Answered by Pankaj K. Physics tutor

22226 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.


What is the minimum initial velocity necessary for an object to leave Earth?


Derive Keplers 3rd law


A cannon ball is fired at an angle 30 degrees from horizontal from a cannon with a speed 30km/h, a) calculate how high the cannonball flies, and the horizontal distance from the cannon the cannonball reaches


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning