Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi

we have   cos (3x) = 0.5  (1) we know that in the interval between [-pi; pi] there are two values that satify the equation cos(y) = 0.5  (2) the two solutions are y=pi/3 and y=-pi/3 in this interval.  More generally, there are two grop of solutions which are y=(pi/3) + 2kpi and y=(-pi/3) + 2kpi  (were k is a natural integer) From the equations (1) and (2) we can thus set : 3x = y  <=>  3x = (pi/3) + 2k    and    3x = (-pi/3) + 2k*pi so by dividing each part of the equation by 3 we get   x= (pi/9) + (2k/3)*pi  and x = (-pi/9) + (2k/3)*pi

Answered by Marie B. Maths tutor

6272 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


intergrate xcos(2x) with respect to x


Why does the second derivative tell us something about a function?


Find the coordinates of the maximum stationary point of the y = x^2 +4x curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences