Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi

we have   cos (3x) = 0.5  (1) we know that in the interval between [-pi; pi] there are two values that satify the equation cos(y) = 0.5  (2) the two solutions are y=pi/3 and y=-pi/3 in this interval.  More generally, there are two grop of solutions which are y=(pi/3) + 2kpi and y=(-pi/3) + 2kpi  (were k is a natural integer) From the equations (1) and (2) we can thus set : 3x = y  <=>  3x = (pi/3) + 2k    and    3x = (-pi/3) + 2k*pi so by dividing each part of the equation by 3 we get   x= (pi/9) + (2k/3)*pi  and x = (-pi/9) + (2k/3)*pi

MB
Answered by Marie B. Maths tutor

7386 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line has equation y = 2x + c and a curve has equation y = 8 − 2x − x^2, if c=11 find area between the curves


A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


When you integrate, why do you need to add a +C on the end?


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning