Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.

To find the first derivative we must apply the chain rule. Our aim is to find dr/d(theta). We start by bringing the differential of what's inside the sine brackets outside and multiplying it by the differential of sine but keeping the same theta+sqrt(theta+1) for the whole sine differential. The differential we're bringing out is dr/d(theta) of theta+sqrt(theta+1) which is 1+1/2*(theta+1)-1/2 and the sine differentiates to cosine which becomes cos(theta+sqrt[theta+1]). Multiplying these both together gives us the answer by means of the chain rule of dr/d(theta)=(1+1/2*(theta+1)-1/2)cos(theta+sqrt[theta+1]). Simplifying it gives us the final answer of dr/d(theta)=(1+1/(2sqrt(theta+1)))*cos(theta+sqrt[theta+1]).

Answered by Tutor61926 D. Maths tutor

3798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can the y=sin(x) graph be manipulated?


Express (5x + 3)/((2x - 3)(x + 2)) in partial fractions.


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


The line L has equation y = 5 - 2x. (a) Show that the point P (3, -1) lies on L. (b) Find an equation of the line perpendicular to L that passes through P.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences