Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.

To find the first derivative we must apply the chain rule. Our aim is to find dr/d(theta). We start by bringing the differential of what's inside the sine brackets outside and multiplying it by the differential of sine but keeping the same theta+sqrt(theta+1) for the whole sine differential. The differential we're bringing out is dr/d(theta) of theta+sqrt(theta+1) which is 1+1/2*(theta+1)-1/2 and the sine differentiates to cosine which becomes cos(theta+sqrt[theta+1]). Multiplying these both together gives us the answer by means of the chain rule of dr/d(theta)=(1+1/2*(theta+1)-1/2)cos(theta+sqrt[theta+1]). Simplifying it gives us the final answer of dr/d(theta)=(1+1/(2sqrt(theta+1)))*cos(theta+sqrt[theta+1]).

TD
Answered by Tutor61926 D. Maths tutor

4238 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where do the kinematics equations (SUVAT) come from?


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.


show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences