z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.

a) Need to multiply with conjugate to bring z to form a+ib. => z= z * (1-i)/(1-i) = (4-4i) / 2 = 2-2i

b) z^2 = (2-2i)^2 = 4-8i+4 i^2 = 4-8i-4 = 8i

since z is root of x^2+px+q=0 then z* (conjugate) is also a root. Hence (x- (2+2i))*(x-(2-2i)) = 0

=> x^2 -4x +8 = 0 => p = -4, q = 8 

Related Further Mathematics A Level answers

All answers ▸

Find the root of the complex 3+4i


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


How do you sketch the graph of y=(x-1)/(x+1)?


A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences