curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.

dy/dx = dy/dt *dt/dx (chain rule).

x=4tan(t) hence dx/dt = 4 sec2(t)

y = 531/2sin(2t) hence y'= 1031/2 cos(2t)

therefore dy/dx = 1031/2 cos(2t) / 4sec2(t). Since P is on point with x=431/2 we can duduce that t=π/3 and substituting t in dy/dx we get -531/2/16

HP
Answered by Harry P. Maths tutor

7928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f'(x)=3x(x - 1), find f(x)


[FP2] Solve: 3 cosh x - 4 sinh x = 7


A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.


Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning