curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.

dy/dx = dy/dt *dt/dx (chain rule).

x=4tan(t) hence dx/dt = 4 sec2(t)

y = 531/2sin(2t) hence y'= 1031/2 cos(2t)

therefore dy/dx = 1031/2 cos(2t) / 4sec2(t). Since P is on point with x=431/2 we can duduce that t=π/3 and substituting t in dy/dx we get -531/2/16

HP
Answered by Harry P. Maths tutor

8083 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .


"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


What is the equation of a curve with gradient 4x^3 -7x + 3/2 which passes through the point (2,9)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning