curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.

dy/dx = dy/dt *dt/dx (chain rule).

x=4tan(t) hence dx/dt = 4 sec2(t)

y = 531/2sin(2t) hence y'= 1031/2 cos(2t)

therefore dy/dx = 1031/2 cos(2t) / 4sec2(t). Since P is on point with x=431/2 we can duduce that t=π/3 and substituting t in dy/dx we get -531/2/16

HP
Answered by Harry P. Maths tutor

7958 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


Let z=x+yi such that 16=5z - 3z*, What is z?


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


R=1000e^-ct , it takes 5730 years for half of the substance to decay a. find the number of atoms at the start of the decay. b. calculate the number of atoms left when t=22920. c. sketch the function.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning