Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)

The minimum point occurs where dy/dx=0

We have 2 options: 1.) Expanding the brackets 2.) The product rule of differentiation

The shortest is the product rule: dy/dx= (d/dx)(3-x).(x2-2) + (3-x).(d/dx)(x2-2)

dy/dx=(-1).(x2-2) + (3-x).(2x)

dy/dx= -x2+2 +6x-2x2

dy/dx=-3x2+6x+2

-3x2+6x+2=0 gives x=1-root(5/3), and, x=1+root(5/3)

Answered by Zita E. Maths tutor

2726 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c


Integrate f(x): f(x) = (3x +2) / (x^2 - 5x +6)


When you integrate a function why do you add a constant?


How do you integrate (x/(x+1)) dx without using substitution.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences