If y=3x^3e^x; find dy/dx?

Using the product rule we know that dy/dx = uv' + vu' where u = 3x^3; v = e^x. e^x differentiates to itself multiplied by any number in front of the x. u' = 9x^2; v' = e^x. Therefore dy/dx = 3x^3e^x + 9x^2e^x. This could be simplified further if the question asks for the answer in its simplest form. 

AG
Answered by Aimee G. Maths tutor

5627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = lnx + 4x^2 + 3e^4x with respect to x


If the function f is defined as f= 1-2x^3 find the inverse f^-1


How do you differentiate y = 5 x^3 + 1/2 x^2 + 3x -4


Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning