How do we work out the asymptotes of the graph y=1/x -5

In most core 1 papers this kind of question is usually asked. First of all an asymptote is a line that is close to an axis but never touches it. Now look at the graph as a normal reciprocal graph of y=1/x the only difference now is that it has -5 added to the end. Draw the graph y=1/x and move it down the y-axis 5 spaces. This will be your y=1/x -5. You can then work out the x-intercept which would be 2/5. What you will see is two asymptotes along the y and x axis. The asymptote along the y-axis must be x=0 as that asymptote hadn't changed from the previous y=1/x graph. However, the asymptote along the x-axis has changed, since we moved the graph down 5 spaces along the y-axis, the asymptote must be y=-5. 

Answered by Aniqah B. Maths tutor

7736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate x^3-6x^2+2x=0


f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


How do I expand a bracket to a negative power if it doesn't start with a 1.


How do you do integration by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences