How do we work out the asymptotes of the graph y=1/x -5

In most core 1 papers this kind of question is usually asked. First of all an asymptote is a line that is close to an axis but never touches it. Now look at the graph as a normal reciprocal graph of y=1/x the only difference now is that it has -5 added to the end. Draw the graph y=1/x and move it down the y-axis 5 spaces. This will be your y=1/x -5. You can then work out the x-intercept which would be 2/5. What you will see is two asymptotes along the y and x axis. The asymptote along the y-axis must be x=0 as that asymptote hadn't changed from the previous y=1/x graph. However, the asymptote along the x-axis has changed, since we moved the graph down 5 spaces along the y-axis, the asymptote must be y=-5. 

Answered by Aniqah B. Maths tutor

7688 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

intergrate xcos(2x) with respect to x


How would you solve (2x+16)/(x+6)(x+7) in partial fractions?


How do i know where a stationary point is and what type of stationary point it is?


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences