Explain the change of quark character associated with the beta-plus decay and deduce the equation.

First, we can deduce the equation for beta-plus decay in terms of the nucleons. We know a positron, ß+ (antilepton), is produced, so to conserve lepton number an electron neutrino, ve (lepton), must also be produced. As we know this is a nuclear reaction (occurring in the nucleus) it must involve either proton or neutron decay. We can then work out that, to conserve charge, it must be a proton decaying into a neutron as the positron on the right-hand side is positively charged:

p → n + ß+ +ve

Now we consider the quark composition of the proton and neutron. As baryons both must contain 3 quarks. As the up quark has charge +2/3 and the down has charge -1/3 we can use our knowledge of the charge of the proton and neutron to figure out their compositions; uud and udd respectively. Finally, we can see the actual change occurring is an up quark decaying into a down quark:

u → d + ß+ +ve

TF
Answered by Thomas F. Physics tutor

6184 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A coil is connected to an analogue centre zero ammeter. A magnet is dropped (North pole first) so that it falls vertically and completely through the coil. What would be observe on the ammeter?


A child is standing on a walkway that is moving at 2 metres per second and decides to turn around and walk back to the start at 2 metres per second. Explain why the child cannot reach the start of the walkway at this speed.


A car is travelling at 10m/s when it brakes and decelerates at 2ms^-2 to a stop. How long does the car take to stop?


Show that gravitational force within a nuclei is negilible compared with the electric repulsion.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning