The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.

A) dy/dx = (-4xy-2) / (2x2+4+pisin(piy) B) (62+3*pi) / (22+pi)

AH
Answered by Alisha H. Maths tutor

5029 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


The parametric equations of a curve are: x = cos2θ y = sinθcosθ. Find the cartesian form of the equation.


Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


Integrate sinx*ln(cosx) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning