Explain how and why the diffraction pattern of electrons passing through a slit depends on their momentum.

To understand this question, we have to consider the wave-particle duality of electrons. When passing through a slit, electrons exhibit a wavelike property- they diffract or spread out like a wave passing through a narrow gap. The De Broglie wavelength tells us about the wave-particle relationship:

λ = h/mv

where λ is the wavelength, h is planks constant, m is the mass and v is velocity. As momentum p = mv, a smaller momentum will result in a longer wavelength. The diffraction or spread of a wave passing through a slit depends on the wavelength- the longer the wavelength, the more the light spreads out. Finally, we can consider (through a diagram) that more spread out waves will have a more dispersed diffraction pattern. Therefore, electrons with smaller momentum will produce a more diffuse diffraction pattern.

Answered by Thomas F. Physics tutor

12379 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A model truck A of mass 1.2 kg is travelling due west with a speed of 0.90 m/s . A second truck B of mass 4.0 kg is travelling due east towards A with a speed of 0.35 m/s .


Describe energy transformations in a oscillating pendulum, which undergoes simple harmonic motion. How this implies the velocity at critical (lowest and highest) points?


A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.


From the 2016 OCR B paper A ball is thrown at an angle of 30 Degrees to the horizontal. The initial kinetic energy of the ball is K. Air resistance is negligible. What is the kinetic energy of the ball at the maximum height.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences