Differentiate: sin(x) + 2x^2

To tackle this problem, we will spilt the two terms given.

Firsly, we'll take the sin(x) by itself: d/dx (sinx) = cos(x) - where d/dx means the differential of what is inside the bracket.

  • This is a key differential that you should memorise or have already memorised. *

Next, we take the 2x^2: d/dx (2x^2) = 2*2x^1 = 4x - as x^1 is just x. - Again, this is a rule that you should memorise: multiply the number infront of the x by the power and then decrese the power by 1.

Therefore, your final answer should combine the two terms with the same symbol as shown in the question (in this case just '+' ):

So, we now have worked out that: d/dx (sin(x) + 2x^2) = cos(x) + 4x

And that's your final answer! Well done if you got that!

Answered by Emma L. Maths tutor

3008 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to derive escape velocity


Using the "complete the square" method, solve the following x^2 +4x - 21 =0


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


Given f(x) = 3 - 5x + x^3, how can I show that f(x) = 0 has a root (x=a) in the interval 1<a<2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences